Unimodality questions for integrally closed lattice polytopes

It is a famous open question whether every integrally closed reflexive polytope has a unimodal Ehrhart delta-vector. We generalize this question to arbitrary integrally closed lattice polytopes and we prove unimodality for the delta-vector of lattice parallelepipeds. This is the first nontrivial cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-10
Hauptverfasser: Schepers, Jan, Leen Van Langenhoven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is a famous open question whether every integrally closed reflexive polytope has a unimodal Ehrhart delta-vector. We generalize this question to arbitrary integrally closed lattice polytopes and we prove unimodality for the delta-vector of lattice parallelepipeds. This is the first nontrivial class of integrally closed polytopes. Moreover, we suggest a new approach to the problem for reflexive polytopes via triangulations.
ISSN:2331-8422