Fixed parameter algorithms for restricted coloring problems

In this paper, we obtain polynomial time algorithms to determine the acyclic chromatic number, the star chromatic number, the Thue chromatic number, the harmonious chromatic number and the clique chromatic number of \(P_4\)-tidy graphs and \((q,q-4)\)-graphs, for every fixed \(q\). These classes inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-09
Hauptverfasser: Campos, Victor, Linhares-Sales, Cláudia, Maia, Ana Karolinna, Martins, Nicolas, Rudini Menezes Sampaio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we obtain polynomial time algorithms to determine the acyclic chromatic number, the star chromatic number, the Thue chromatic number, the harmonious chromatic number and the clique chromatic number of \(P_4\)-tidy graphs and \((q,q-4)\)-graphs, for every fixed \(q\). These classes include cographs, \(P_4\)-sparse and \(P_4\)-lite graphs. All these coloring problems are known to be NP-hard for general graphs. These algorithms are fixed parameter tractable on the parameter \(q(G)\), which is the minimum \(q\) such that \(G\) is a \((q,q-4)\)-graph. We also prove that every connected \((q,q-4)\)-graph with at least \(q\) vertices is 2-clique-colorable and that every acyclic coloring of a cograph is also nonrepetitive.
ISSN:2331-8422