Syzygy Theorems via Comparison of Order Ideals on a Hypersurface
We introduce a weak order ideal property that suffices for establishing the Evans-Griffith Syzygy Theorem. We study this weak order ideal property in settings that allow for comparison between homological algebra over a local ring \(R\) versus a hypersurface ring \(R/(x^n)\). Consequently we solve s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a weak order ideal property that suffices for establishing the Evans-Griffith Syzygy Theorem. We study this weak order ideal property in settings that allow for comparison between homological algebra over a local ring \(R\) versus a hypersurface ring \(R/(x^n)\). Consequently we solve some relevant cases of the Evans-Griffith syzygy conjecture over local rings of unramified mixed characteristic \(p\), with the case of syzygies of prime ideals of Cohen-Macaulay local rings of unramified mixed characteristic being noted. We reduce the remaining considerations to modules annihilated by \(p^s\), \(s>0\), that have finite projective dimension over a hypersurface ring. |
---|---|
ISSN: | 2331-8422 |