Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na1-xFeAs

The effect of pressure on the crystalline structure and superconducting transition temperature (Tc) of the 111-type Na1-xFeAs system using in situ high pressure synchrotron x-ray powder diffraction and diamond anvil cell techniques is studied. A pressure-induced tetragonal to tetragonal isostructura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-06
Hauptverfasser: Liu, Qingqing, Yu, Xiaohui, Wang, Xiancheng, Deng, Zheng, Lv, Yuxi, Zhu, Jinlong, Zhang, Sijia, Liu, Haozhe, Yang, Wenge, Wang, Lin, Mao, Hokwang, Shen, Guoyin, Lu, Zhongyi, Yang, Ren, Chen, Zhiqiang, Lin, Zhijun, Zhao, Yusheng, Jin, Changqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of pressure on the crystalline structure and superconducting transition temperature (Tc) of the 111-type Na1-xFeAs system using in situ high pressure synchrotron x-ray powder diffraction and diamond anvil cell techniques is studied. A pressure-induced tetragonal to tetragonal isostructural phase transition was found. The systematic evolution of the FeAs4 tetrahedron as a function of pressure based on Rietveld refinements on the powder x-ray diffraction patterns was obtained. The non-monotonic Tc(P) behavior of Na1-xFeAs is found to correlate with the anomalies of the distance between the anion (As) and the iron layer as well as the bond angle between As-Fe-As for the two tetragonal phases. This behavior provides the key structural information in understanding the origin of the pressure dependence of Tc for 111-type iron pnictide superconductors. A pressure-induced structural phase transition is also observed at 20 GPa.
ISSN:2331-8422