Equivariant extension properties of coset spaces of locally compact groups and approximate slices

We prove that for a compact subgroup \(H\) of a locally compact Hausdorff group \(G\), the following properties are mutually equivalent: (1) \(G/H\) is a manifold, (2) \(G/H\) is finite-dimensional and locally connected, (3) \(G/H\) is locally contractible, (4) \(G/H\) is an ANE for paracompact spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-03
1. Verfasser: Antonyan, Sergey A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for a compact subgroup \(H\) of a locally compact Hausdorff group \(G\), the following properties are mutually equivalent: (1) \(G/H\) is a manifold, (2) \(G/H\) is finite-dimensional and locally connected, (3) \(G/H\) is locally contractible, (4) \(G/H\) is an ANE for paracompact spaces, (5) \(G/H\) is a metrizable \(G\)-ANE for paracompact proper \(G\)-spaces having a paracompact orbit space. A new version of the Approximate slice theorem is also proven in the light of these results.
ISSN:2331-8422