Tail estimates for stochastic fixed point equations via nonlinear renewal theory
This paper presents precise large deviation estimates for solutions to stochastic fixed point equations of the type V =_d f(V), where f(v) = Av + g(v) for a random function g(v) = o(v) a.s. as v tends to infinity. Specifically, we provide an explicit characterization of the pair (C,r) in the tail es...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents precise large deviation estimates for solutions to stochastic fixed point equations of the type V =_d f(V), where f(v) = Av + g(v) for a random function g(v) = o(v) a.s. as v tends to infinity. Specifically, we provide an explicit characterization of the pair (C,r) in the tail estimate P(V > u) ~ C u^-r as u tends to infinity, and also present a Lundberg-type upper bound of the form P(V > u) |
---|---|
ISSN: | 2331-8422 |