On Galois realizations of the 2-coverable symmetric and alternating groups

Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q_p for all p, or equivalently, with roots mod n for all n. It is known that f(x) cannot be irreducible but can be a product of two or more irreducible polynomials, and that if f(x) is a product of m>1 irreducible pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-04
Hauptverfasser: Rabayev, Daniel, Sonn, Jack
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q_p for all p, or equivalently, with roots mod n for all n. It is known that f(x) cannot be irreducible but can be a product of two or more irreducible polynomials, and that if f(x) is a product of m>1 irreducible polynomials, then its Galois group must be "m-coverable", i.e. a union of conjugates of m proper subgroups, whose total intersection is trivial. We are thus led to a variant of the inverse Galois problem: given an m-coverable finite group G, find a Galois realization of G over the rationals Q by a polynomial f(x) in Z[x] which is a product of m nonlinear irreducible factors (in Q[x]) such that f(x) has a root in Q_p for all p. The minimal value m=2 is of special interest. It is known that the symmetric group S_n is 2-coverable if and only if 2
ISSN:2331-8422