Perturbed Evolution Problems with Continuous Bounded Variation in Time and Applications

This paper is devoted to the study of evolution problems of the form − du dr ( t ) ∈ A ( t ) u ( t ) + f ( t , u ( t ) ) in a new setting, where, for each t , A ( t ) : D ( A ( t )) → 2 H is a maximal monotone operator in a Hilbert space H and the mapping t ↦ A ( t ) has continuous bounded or Lipsch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis 2018-09, Vol.26 (3), p.693-728
Hauptverfasser: Azzam-Laouir, Dalila, Castaing, Charles, Monteiro Marques, M. D. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the study of evolution problems of the form − du dr ( t ) ∈ A ( t ) u ( t ) + f ( t , u ( t ) ) in a new setting, where, for each t , A ( t ) : D ( A ( t )) → 2 H is a maximal monotone operator in a Hilbert space H and the mapping t ↦ A ( t ) has continuous bounded or Lipschitz variation on [0, T ], in the sense of Vladimirov’s pseudo-distance. The measure dr gives an upper bound of that variation. The perturbation f is separately integrable on [0, T ] and separately Lipschitz on H . Several versions and new applications are presented.
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-017-0432-9