Perturbed Evolution Problems with Continuous Bounded Variation in Time and Applications
This paper is devoted to the study of evolution problems of the form − du dr ( t ) ∈ A ( t ) u ( t ) + f ( t , u ( t ) ) in a new setting, where, for each t , A ( t ) : D ( A ( t )) → 2 H is a maximal monotone operator in a Hilbert space H and the mapping t ↦ A ( t ) has continuous bounded or Lipsch...
Gespeichert in:
Veröffentlicht in: | Set-valued and variational analysis 2018-09, Vol.26 (3), p.693-728 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to the study of evolution problems of the form
−
du
dr
(
t
)
∈
A
(
t
)
u
(
t
)
+
f
(
t
,
u
(
t
)
)
in a new setting, where, for each
t
,
A
(
t
) :
D
(
A
(
t
)) → 2
H
is a maximal monotone operator in a Hilbert space
H
and the mapping
t
↦
A
(
t
) has continuous bounded or Lipschitz variation on [0,
T
], in the sense of Vladimirov’s pseudo-distance. The measure
dr
gives an upper bound of that variation. The perturbation
f
is separately integrable on [0,
T
] and separately Lipschitz on
H
. Several versions and new applications are presented. |
---|---|
ISSN: | 1877-0533 1877-0541 |
DOI: | 10.1007/s11228-017-0432-9 |