Charm and Strangeness with Heavy-Quark Spin Symmetry

We study charmed and strange baryon resonances that are generated dynamically within a unitary meson-baryon coupled-channel model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry and implementi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-09
Hauptverfasser: Tolos, L, Garcia-Recio, C, Nieves, J, Romanets, O, Salcedo, L L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study charmed and strange baryon resonances that are generated dynamically within a unitary meson-baryon coupled-channel model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry and implementing a strong flavor symmetry breaking. The model generates dynamically resonances with negative parity in all the isospin, spin, and strange and charm sectors that one can form from an s-wave interaction between pseudoscalar and vector meson multiplets with \(1/2^+\) and \(3/2^+\) baryons. Our results are compared with experimental data from several facilities as well as with other theoretical models. Moreover, we obtain the properties of charmed pseudoscalar and vector mesons in dense matter within this coupled-channel unitary effective model by taking into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense nuclear environment, and discuss their implications on the formation of \(D\)-mesic nuclei at FAIR energies.
ISSN:2331-8422