Memoryless Control Design for Persistent Surveillance under Safety Constraints
This paper deals with the design of time-invariant memoryless control policies for robots that move in a finite two- dimensional lattice and are tasked with persistent surveillance of an area in which there are forbidden regions. We model each robot as a controlled Markov chain whose state comprises...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the design of time-invariant memoryless control policies for robots that move in a finite two- dimensional lattice and are tasked with persistent surveillance of an area in which there are forbidden regions. We model each robot as a controlled Markov chain whose state comprises its position in the lattice and the direction of motion. The goal is to find the minimum number of robots and an associated time-invariant memoryless control policy that guarantees that the largest number of states are persistently surveilled without ever visiting a forbidden state. We propose a design method that relies on a finitely parametrized convex program inspired by entropy maximization principles. Numerical examples are provided. |
---|---|
ISSN: | 2331-8422 |