A Geometrical Approach to Iterative Isotone Regression

In the present paper, we propose and analyze a novel method for estimating a univariate regression function of bounded variation. The underpinning idea is to combine two classical tools in nonparametric statistics, namely isotonic regression and the estimation of additive models. A geometrical inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-11
Hauptverfasser: Guyader, Arnaud, Jégou, Nicolas, Németh, Alexander B, Németh, Sándor Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we propose and analyze a novel method for estimating a univariate regression function of bounded variation. The underpinning idea is to combine two classical tools in nonparametric statistics, namely isotonic regression and the estimation of additive models. A geometrical interpretation enables us to link this iterative method with Von Neumann's algorithm. Moreover, making a connection with the general property of isotonicity of projection onto convex cones, we derive another equivalent algorithm and go further in the analysis. As iterating the algorithm leads to overfitting, several practical stopping criteria are also presented and discussed.
ISSN:2331-8422