Skew-self-adjoint Dirac systems with a rectangular matrix potential: Weyl theory, direct and inverse problems
A non-classical Weyl theory is developed for skew-self-adjoint Dirac systems with rectangular matrix potentials. The notion of the Weyl function is introduced and direct and inverse problems are solved. A Borg-Marchenko type uniqueness result and the evolution of the Weyl function for the correspond...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A non-classical Weyl theory is developed for skew-self-adjoint Dirac systems with rectangular matrix potentials. The notion of the Weyl function is introduced and direct and inverse problems are solved. A Borg-Marchenko type uniqueness result and the evolution of the Weyl function for the corresponding focusing nonlinear Schr\"odinger equation are also derived. |
---|---|
ISSN: | 2331-8422 |