Skew-self-adjoint Dirac systems with a rectangular matrix potential: Weyl theory, direct and inverse problems

A non-classical Weyl theory is developed for skew-self-adjoint Dirac systems with rectangular matrix potentials. The notion of the Weyl function is introduced and direct and inverse problems are solved. A Borg-Marchenko type uniqueness result and the evolution of the Weyl function for the correspond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-12
Hauptverfasser: Fritzsche, B, Kirstein, B, I Ya Roitberg, Sakhnovich, A L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A non-classical Weyl theory is developed for skew-self-adjoint Dirac systems with rectangular matrix potentials. The notion of the Weyl function is introduced and direct and inverse problems are solved. A Borg-Marchenko type uniqueness result and the evolution of the Weyl function for the corresponding focusing nonlinear Schr\"odinger equation are also derived.
ISSN:2331-8422