The moduli stack and motivic Hall algebra for the bounded derived category

We give an alternate formulation of pseudo-coherence over an arbitrary derived stack X. The full subcategory of pseudo-coherent objects forms a stable sub-infinity-category of the derived category associated to X. Using relative Tor-amplitude we define a derived stack classifying pseudo-coherent obj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-07
1. Verfasser: Lowrey, Parker E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an alternate formulation of pseudo-coherence over an arbitrary derived stack X. The full subcategory of pseudo-coherent objects forms a stable sub-infinity-category of the derived category associated to X. Using relative Tor-amplitude we define a derived stack classifying pseudo-coherent objects. For reasonable base schemes, this classifies the bounded derived category. In the case that X is a projective derived scheme flat over the base, we show the moduli is locally geometric and locally of almost finite type. Using this result, we prove the existence of a derived motivic Hall algebra associated to X.
ISSN:2331-8422