The moduli stack and motivic Hall algebra for the bounded derived category
We give an alternate formulation of pseudo-coherence over an arbitrary derived stack X. The full subcategory of pseudo-coherent objects forms a stable sub-infinity-category of the derived category associated to X. Using relative Tor-amplitude we define a derived stack classifying pseudo-coherent obj...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an alternate formulation of pseudo-coherence over an arbitrary derived stack X. The full subcategory of pseudo-coherent objects forms a stable sub-infinity-category of the derived category associated to X. Using relative Tor-amplitude we define a derived stack classifying pseudo-coherent objects. For reasonable base schemes, this classifies the bounded derived category. In the case that X is a projective derived scheme flat over the base, we show the moduli is locally geometric and locally of almost finite type. Using this result, we prove the existence of a derived motivic Hall algebra associated to X. |
---|---|
ISSN: | 2331-8422 |