Grothendieck-Riemann-Roch for derived schemes
We define bivariant algebraic K-theory and bivariant derived Chow on the homotopy category of derived schemes over a smooth base. The orientation on the latter corresponds to virtual Gysin homomorphisms. We then provide a morphism between these two bivariant theories and compare the two orientations...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define bivariant algebraic K-theory and bivariant derived Chow on the homotopy category of derived schemes over a smooth base. The orientation on the latter corresponds to virtual Gysin homomorphisms. We then provide a morphism between these two bivariant theories and compare the two orientations. This comparison then yields a homological and cohomological Grothendieck-Riemann-Roch formula for virtual classes. |
---|---|
ISSN: | 2331-8422 |