Grothendieck-Riemann-Roch for derived schemes

We define bivariant algebraic K-theory and bivariant derived Chow on the homotopy category of derived schemes over a smooth base. The orientation on the latter corresponds to virtual Gysin homomorphisms. We then provide a morphism between these two bivariant theories and compare the two orientations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-08
Hauptverfasser: Parker, Lowrey, Schürg, Timo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define bivariant algebraic K-theory and bivariant derived Chow on the homotopy category of derived schemes over a smooth base. The orientation on the latter corresponds to virtual Gysin homomorphisms. We then provide a morphism between these two bivariant theories and compare the two orientations. This comparison then yields a homological and cohomological Grothendieck-Riemann-Roch formula for virtual classes.
ISSN:2331-8422