About Fokker-Planck equation with measurable coefficients and applications to the fast diffusion equation

The object of this paper is the uniqueness for a \(d\)-dimensional Fokker-Planck type equation with non-homogeneous (possibly degenerated) measurable not necessarily bounded coefficients. We provide an application to the probabilistic representation of the so called Barenblatt solution of the fast d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-09
Hauptverfasser: Belaribi, Nadia, Russo, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The object of this paper is the uniqueness for a \(d\)-dimensional Fokker-Planck type equation with non-homogeneous (possibly degenerated) measurable not necessarily bounded coefficients. We provide an application to the probabilistic representation of the so called Barenblatt solution of the fast diffusion equation which is the partial differential equation \(\partial_t u = \partial^2_{xx} u^m\) with \(m\in(0,1)\). Together with the mentioned Fokker-Planck equation, we make use of small time density estimates uniformly with respect to the initial condition
ISSN:2331-8422