Dualizability of automatic algebras
We make a start on one of George McNulty's Dozen Easy Problems: "Which finite automatic algebras are dualizable?" We give some necessary and some sufficient conditions for dualizability. For example, we prove that a finite automatic algebra is dualizable if its letters act as an abeli...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We make a start on one of George McNulty's Dozen Easy Problems: "Which finite automatic algebras are dualizable?" We give some necessary and some sufficient conditions for dualizability. For example, we prove that a finite automatic algebra is dualizable if its letters act as an abelian group of permutations on its states. To illustrate the potential difficulty of the general problem, we exhibit an infinite ascending chain \(\mathbf A_1 \le \mathbf A_2 \le \mathbf A_3 \le ...b\) of finite automatic algebras that are alternately dualizable and non-dualizable. |
---|---|
ISSN: | 2331-8422 |