On the Sum of Reciprocals of Amicable Numbers
Two numbers \(m\) and \(n\) are considered amicable if the sum of their proper divisors, \(s(n)\) and \(s(m)\), satisfy \(s(n) = m\) and \(s(m) = n\). In 1981, Pomerance showed that the sum of the reciprocals of all such numbers, \(P\), is a constant. We obtain both a lower and an upper bound on the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two numbers \(m\) and \(n\) are considered amicable if the sum of their proper divisors, \(s(n)\) and \(s(m)\), satisfy \(s(n) = m\) and \(s(m) = n\). In 1981, Pomerance showed that the sum of the reciprocals of all such numbers, \(P\), is a constant. We obtain both a lower and an upper bound on the value of \(P\). |
---|---|
ISSN: | 2331-8422 |