On the Sum of Reciprocals of Amicable Numbers

Two numbers \(m\) and \(n\) are considered amicable if the sum of their proper divisors, \(s(n)\) and \(s(m)\), satisfy \(s(n) = m\) and \(s(m) = n\). In 1981, Pomerance showed that the sum of the reciprocals of all such numbers, \(P\), is a constant. We obtain both a lower and an upper bound on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-12
Hauptverfasser: Bayless, Jonathan, Klyve, Dominic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two numbers \(m\) and \(n\) are considered amicable if the sum of their proper divisors, \(s(n)\) and \(s(m)\), satisfy \(s(n) = m\) and \(s(m) = n\). In 1981, Pomerance showed that the sum of the reciprocals of all such numbers, \(P\), is a constant. We obtain both a lower and an upper bound on the value of \(P\).
ISSN:2331-8422