Covering \(L^p\) spaces by balls
We prove that, given any covering of any separable infinite-dimensional uniformly rotund and uniformly smooth Banach space \(X\) by closed balls each of positive radius, some point exists in \(X\) which belongs to infinitely many balls.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that, given any covering of any separable infinite-dimensional uniformly rotund and uniformly smooth Banach space \(X\) by closed balls each of positive radius, some point exists in \(X\) which belongs to infinitely many balls. |
---|---|
ISSN: | 2331-8422 |