On the Lazarev-Lieb Extension of the Hobby-Rice Theorem
O. Lazarev and E. H. Lieb proved that given \(f_{1},...,f_{n}\in L^{1}([0,1];\mathbb{C})\), there exists a smooth function \(\Phi\) that takes values on the unit circle and annihilates \({span}\{f_{1},...,f_{n}}\). We give an alternative proof of that fact that also shows the \(W^{1,1}\) norm of \(\...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | O. Lazarev and E. H. Lieb proved that given \(f_{1},...,f_{n}\in L^{1}([0,1];\mathbb{C})\), there exists a smooth function \(\Phi\) that takes values on the unit circle and annihilates \({span}\{f_{1},...,f_{n}}\). We give an alternative proof of that fact that also shows the \(W^{1,1}\) norm of \(\Phi\) can be bounded by \(5\pi n+1\). Answering a question raised by Lazarev and Lieb, we show that if \(p>1\) then there is no bound for the \(W^{1,p}\) norm of any such multiplier in terms of the norms of \(f_{1},...,f_{n}\). |
---|---|
ISSN: | 2331-8422 |