On the Lazarev-Lieb Extension of the Hobby-Rice Theorem

O. Lazarev and E. H. Lieb proved that given \(f_{1},...,f_{n}\in L^{1}([0,1];\mathbb{C})\), there exists a smooth function \(\Phi\) that takes values on the unit circle and annihilates \({span}\{f_{1},...,f_{n}}\). We give an alternative proof of that fact that also shows the \(W^{1,1}\) norm of \(\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-12
1. Verfasser: Rutherfoord, Vermont
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:O. Lazarev and E. H. Lieb proved that given \(f_{1},...,f_{n}\in L^{1}([0,1];\mathbb{C})\), there exists a smooth function \(\Phi\) that takes values on the unit circle and annihilates \({span}\{f_{1},...,f_{n}}\). We give an alternative proof of that fact that also shows the \(W^{1,1}\) norm of \(\Phi\) can be bounded by \(5\pi n+1\). Answering a question raised by Lazarev and Lieb, we show that if \(p>1\) then there is no bound for the \(W^{1,p}\) norm of any such multiplier in terms of the norms of \(f_{1},...,f_{n}\).
ISSN:2331-8422