Learning and Solving Many-Player Games through a Cluster-Based Representation
In addressing the challenge of exponential scaling with the number of agents we adopt a cluster-based representation to approximately solve asymmetric games of very many players. A cluster groups together agents with a similar "strategic view" of the game. We learn the clustered approximat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In addressing the challenge of exponential scaling with the number of agents we adopt a cluster-based representation to approximately solve asymmetric games of very many players. A cluster groups together agents with a similar "strategic view" of the game. We learn the clustered approximation from data consisting of strategy profiles and payoffs, which may be obtained from observations of play or access to a simulator. Using our clustering we construct a reduced "twins" game in which each cluster is associated with two players of the reduced game. This allows our representation to be individually- responsive because we align the interests of every individual agent with the strategy of its cluster. Our approach provides agents with higher payoffs and lower regret on average than model-free methods as well as previous cluster-based methods, and requires only few observations for learning to be successful. The "twins" approach is shown to be an important component of providing these low regret approximations. |
---|---|
ISSN: | 2331-8422 |