Growth Properties of Fourier Transforms
In a recent paper by the authors, growth properties of the Fourier transform on Euclidean space and the Helgason Fourier transform on rank one symmetric spaces of non-compact type were proved and expressed in terms of of a modulus of continuity based on spherical means. The methodology employed firs...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a recent paper by the authors, growth properties of the Fourier transform on Euclidean space and the Helgason Fourier transform on rank one symmetric spaces of non-compact type were proved and expressed in terms of of a modulus of continuity based on spherical means. The methodology employed first proved the result on Euclidean space and then, via a comparison estimate for spherical functions on rank one symmetric spaces to those on Euclidean space, we obtained the results on symmetric spaces. In this note, an analytically simple, yet overlooked refinement of our estimates for spherical Bessel functions is presented which provides significant improvement in the growth property estimates. |
---|---|
ISSN: | 2331-8422 |