Vestiges of Precambrian subduction in the south Indian shield? - A seismological perspective

Investigation of large scale suture zones in old continental interiors offers insights into the evolution of continents. The Dharwar Craton (DC) and the Southern Granulite Terrain(SGT) of the Indian shield represent large segments of Precambrian middle to lower crust and preserve a geological record...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2018-08, Vol.740-741, p.27-41
Hauptverfasser: Kumar, M. Ravi, Singh, Arun, Rao, Y.J. Bhaskar, Srijayanthi, G., Satyanarayana, H.V., Sarkar, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Investigation of large scale suture zones in old continental interiors offers insights into the evolution of continents. The Dharwar Craton (DC) and the Southern Granulite Terrain(SGT) of the Indian shield represent large segments of Precambrian middle to lower crust and preserve a geological record spanning from Mesoarchean to Cambrian. This study illuminates the deep structure of the Palghat-Cauvery Shear Zone System (PCSS) and the Palghat-Cauvery Suture Zone (PCSZ) that comprise crustal-scale structures related to multiple episodes of orogeny, crust formation and reworking. We utilize here 3202 high quality P-receiver functions computed using new data from a 23 station seismic network operated by us. Results show a thick (>38 km) mafic (Poisson's ratio >0.25) crust beneath the SGT. The change in crustal thickness is gradual, with a shallower Moho towards the south of PCSZ. We found little evidence for drastic changes in crustal thickness across prominent shear zones like the PCSZ and Moyar-Bhavani. Few seismic stations located along these boundaries have shown evidence for dipping reflectors around 8–20 km depth, with strikes matching well with the trends of surface geological sutures. We opine that these suture zones do not show indications of a terrane boundary. However, a drastic change in the crustal thickness is observed around the prograde metamorphic transition zone or broadly, the “Fermor line”, which separates rocks of Chanockitic (Orthopyroxene bearing granitoid) and non-Charnockitic (Orthopyroxene-free granitoid) mineral assemblage, further north beneath the DC. We suggest that thicknening of crust north of Moyar-Attur Shear Zone (MASZ) and around Fermor line is related to subduction processes operative during the Precambrian. •New knowledge of crustal structure across a Precambrian Suture zone in southern India•A gentle north dipping Moho revealed by modelling and CCP imaging of RFs•Drastic change in the crustal thickness across a metamorphic transition zone•Possible evidence for a paleo-subduction signature
ISSN:0040-1951
1879-3266
DOI:10.1016/j.tecto.2018.05.005