Approximate Connes-amenability of dual Banach algebras
We introduce the notions of approximate Connes-amenability and approximate strong Connes-amenability for dual Banach algebras. Then we characterize these two types of algebras in terms of approximate normal virtual diagonals and approximate \(\sigma WC-\)virtual diagonals. We investigate these prope...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notions of approximate Connes-amenability and approximate strong Connes-amenability for dual Banach algebras. Then we characterize these two types of algebras in terms of approximate normal virtual diagonals and approximate \(\sigma WC-\)virtual diagonals. We investigate these properties for von Neumann algebras and measure algebras of locally compact groups. In particular we show that a von Neumann algebra is approximately Connes-amenable if and only if it has an approximate normal virtual diagonal. This is the ``approximate'' analog of the main result of Effros in [E. G. Effros, Amenability and virtual diagonals for von Neumann algebras, J. Funct. Anal. 78 (1988), 137-153]. We show that in general the concepts of approximate Connes-ameanbility and Connes-ameanbility are distinct, but for measure algebras these two concepts coincide. Moreover cases where approximate Connes-amenability of \(\A^{**}\) implies approximate Connes-amenability or approximate amenability of \(\A\) are also discussed. |
---|---|
ISSN: | 2331-8422 |