On the Limit Law of a Random Walk Conditioned to Reach a High Level

We consider a random walk with a negative drift and with a jump distribution which under Cramér's change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this random walk converges in law to a nondecrea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-08
Hauptverfasser: Foss, Sergey G, Puhalskii, Anatolii A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a random walk with a negative drift and with a jump distribution which under Cramér's change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this random walk converges in law to a nondecreasing Markov process which can be interpreted as a spectrally-positive Lévy %-Khinchin process conditioned not to overshoot level one.
ISSN:2331-8422