A versatile ion beam spectrometer for studies of ion interaction with 2D materials

We present an ultrahigh vacuum setup for ion spectroscopy of freestanding two-dimensional solid targets. An ion beam of different ion species (e.g., Xe with charge states from 1 to 44 and Ar with charge states from 1 to 18) and kinetic energies ranging from a few 10 eV to 400 keV is produced in an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-08, Vol.89 (8), p.085101-085101
Hauptverfasser: Schwestka, Janine, Melinc, David, Heller, René, Niggas, Anna, Leonhartsberger, Lukas, Winter, Helmut, Facsko, Stefan, Aumayr, Friedrich, Wilhelm, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an ultrahigh vacuum setup for ion spectroscopy of freestanding two-dimensional solid targets. An ion beam of different ion species (e.g., Xe with charge states from 1 to 44 and Ar with charge states from 1 to 18) and kinetic energies ranging from a few 10 eV to 400 keV is produced in an electron beam ion source. Ions are detected after their transmission through the 2D target with a position sensitive microchannel plate detector allowing the determination of the ion’s exit charge state as well as the scattering angle with a resolution of approximately 0.04°. Furthermore, the spectrometer is mounted on a swiveling frame covering a scattering angle of ±8° with respect to the incoming beam direction. By utilizing a beam chopper, we measure the time-of-flight of the projectiles and determine the energy loss when passing a 2D target with an energy uncertainty of about 2%. Additional detectors are mounted close to the target to observe emitted secondary particles and are read-out in coincidence with the position and time information of the ion detector. A signal in these detectors can also be used as a start trigger for time-of-flight measurements, which then yield an energy resolution of 1% and an approximately 1000-fold larger duty cycle. First results on the interaction of slow Xe30+ ions with a freestanding single layer of graphene obtained with the new setup are compared to recently published data where charge exchange and energy were measured by means of an electrostatic analyzer.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.5037798