Indecomposable modules of the intermediate series over W(a,b) algebras
For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irred...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Su, Yucai Xu, Ying Yue, Xiaoqing |
description | For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module. Furthermore, if a\notin Q, an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of W_k. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086286008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086286008</sourcerecordid><originalsourceid>FETCH-proquest_journals_20862860083</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQa6FCRss2l7j6TuQUdZcyxldW1n7fkr6AE6_Yfvn4gIldomeoc4EzFzK6XEbI9pqiKRn_uKbq4bHJvSEnSuGi0xuBrCg6DpA_mOqsYEAibffOlFHq4rsynXYOydSm94Iaa1sUzxr3OxzI-XwykZvHuOxKFo3ej7DxUodYY6k1Kr_643qXY66Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086286008</pqid></control><display><type>article</type><title>Indecomposable modules of the intermediate series over W(a,b) algebras</title><source>Free E- Journals</source><creator>Su, Yucai ; Xu, Ying ; Yue, Xiaoqing</creator><creatorcontrib>Su, Yucai ; Xu, Ying ; Yue, Xiaoqing</creatorcontrib><description>For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module. Furthermore, if a\notin Q, an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of W_k.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Lie groups ; Modules ; Weight</subject><ispartof>arXiv.org, 2012-10</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Su, Yucai</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Yue, Xiaoqing</creatorcontrib><title>Indecomposable modules of the intermediate series over W(a,b) algebras</title><title>arXiv.org</title><description>For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module. Furthermore, if a\notin Q, an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of W_k.</description><subject>Algebra</subject><subject>Lie groups</subject><subject>Modules</subject><subject>Weight</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQa6FCRss2l7j6TuQUdZcyxldW1n7fkr6AE6_Yfvn4gIldomeoc4EzFzK6XEbI9pqiKRn_uKbq4bHJvSEnSuGi0xuBrCg6DpA_mOqsYEAibffOlFHq4rsynXYOydSm94Iaa1sUzxr3OxzI-XwykZvHuOxKFo3ej7DxUodYY6k1Kr_643qXY66Q</recordid><startdate>20121026</startdate><enddate>20121026</enddate><creator>Su, Yucai</creator><creator>Xu, Ying</creator><creator>Yue, Xiaoqing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121026</creationdate><title>Indecomposable modules of the intermediate series over W(a,b) algebras</title><author>Su, Yucai ; Xu, Ying ; Yue, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20862860083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Lie groups</topic><topic>Modules</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Su, Yucai</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Yue, Xiaoqing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Yucai</au><au>Xu, Ying</au><au>Yue, Xiaoqing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Indecomposable modules of the intermediate series over W(a,b) algebras</atitle><jtitle>arXiv.org</jtitle><date>2012-10-26</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module. Furthermore, if a\notin Q, an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of W_k.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086286008 |
source | Free E- Journals |
subjects | Algebra Lie groups Modules Weight |
title | Indecomposable modules of the intermediate series over W(a,b) algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Indecomposable%20modules%20of%20the%20intermediate%20series%20over%20W(a,b)%20algebras&rft.jtitle=arXiv.org&rft.au=Su,%20Yucai&rft.date=2012-10-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086286008%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086286008&rft_id=info:pmid/&rfr_iscdi=true |