Indecomposable modules of the intermediate series over W(a,b) algebras
For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irred...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module. Furthermore, if a\notin Q, an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of W_k. |
---|---|
ISSN: | 2331-8422 |