Indecomposable modules of the intermediate series over W(a,b) algebras

For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-10
Hauptverfasser: Su, Yucai, Xu, Ying, Yue, Xiaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any complex parameters a,b, the W(a,b) algebra is the Lie algebra with basis {L_i,W_i|i\in Z}, and relations [L_i,L_j]=(j-i)L_{i+j}, [L_i,W_j]=(a+j+bi)W_{i+j},[W_i,W_j]=0. In this paper, indecomposable modules of the intermediate series over W(a,b) are classified. It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module. Furthermore, if a\notin Q, an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of W_k.
ISSN:2331-8422