On compression of Bruhat-Tits buildings

We obtain an analog of the compression of angles theorem in symmetric spaces for Bruhat--Tits buildings of the type \(A\). More precisely, consider a \(p\)-adic linear space \(V\) and the set \(Lat(V)\) of all lattices in \(V\). The complex distance in \(Lat(V)\) is a complete system of invariants o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2004-10
1. Verfasser: Neretin, Yuri A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain an analog of the compression of angles theorem in symmetric spaces for Bruhat--Tits buildings of the type \(A\). More precisely, consider a \(p\)-adic linear space \(V\) and the set \(Lat(V)\) of all lattices in \(V\). The complex distance in \(Lat(V)\) is a complete system of invariants of a pair of points of \(Lat(V)\) under the action of the complete linear group. An element of a Nazarov semigroup is a lattice in the duplicated linear space \(V\oplus V\). We investigate behavior of the complex distance under the action of the Nazarov semigroup on the set \(Lat(V)\).
ISSN:2331-8422
DOI:10.48550/arxiv.0410242