On compression of Bruhat-Tits buildings
We obtain an analog of the compression of angles theorem in symmetric spaces for Bruhat--Tits buildings of the type \(A\). More precisely, consider a \(p\)-adic linear space \(V\) and the set \(Lat(V)\) of all lattices in \(V\). The complex distance in \(Lat(V)\) is a complete system of invariants o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2004-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain an analog of the compression of angles theorem in symmetric spaces for Bruhat--Tits buildings of the type \(A\). More precisely, consider a \(p\)-adic linear space \(V\) and the set \(Lat(V)\) of all lattices in \(V\). The complex distance in \(Lat(V)\) is a complete system of invariants of a pair of points of \(Lat(V)\) under the action of the complete linear group. An element of a Nazarov semigroup is a lattice in the duplicated linear space \(V\oplus V\). We investigate behavior of the complex distance under the action of the Nazarov semigroup on the set \(Lat(V)\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0410242 |