Irreducibly acting subgroups of \(Gl(n,\rr)\)
In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Di Scala, Antonio J Leistner, Thomas Neukirchner, Thomas |
description | In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\) is maximal, i.e. it is conjugated to \(SO(1,n-1)_0\). Finally we calculate the vector space of \(G\)-invariant symmetric bilinear forms, show that it is at most 3-dimensional, and determine the maximal stabilizers for each dimension. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086274340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086274340</sourcerecordid><originalsourceid>FETCH-proquest_journals_20862743403</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9SwqSk0pTc5MyqlUSEwuycxLVyguTUovyi8tKFbIT1OI0XDP0cjTiSkq0ozR5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDCzMjcxNjEwNj4lQBAHElMRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086274340</pqid></control><display><type>article</type><title>Irreducibly acting subgroups of \(Gl(n,\rr)\)</title><source>Free E- Journals</source><creator>Di Scala, Antonio J ; Leistner, Thomas ; Neukirchner, Thomas</creator><creatorcontrib>Di Scala, Antonio J ; Leistner, Thomas ; Neukirchner, Thomas</creatorcontrib><description>In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\) is maximal, i.e. it is conjugated to \(SO(1,n-1)_0\). Finally we calculate the vector space of \(G\)-invariant symmetric bilinear forms, show that it is at most 3-dimensional, and determine the maximal stabilizers for each dimension.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Invariants ; Set theory ; Subgroups</subject><ispartof>arXiv.org, 2005-07</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0507047.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Di Scala, Antonio J</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><creatorcontrib>Neukirchner, Thomas</creatorcontrib><title>Irreducibly acting subgroups of \(Gl(n,\rr)\)</title><title>arXiv.org</title><description>In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\) is maximal, i.e. it is conjugated to \(SO(1,n-1)_0\). Finally we calculate the vector space of \(G\)-invariant symmetric bilinear forms, show that it is at most 3-dimensional, and determine the maximal stabilizers for each dimension.</description><subject>Invariants</subject><subject>Set theory</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9SwqSk0pTc5MyqlUSEwuycxLVyguTUovyi8tKFbIT1OI0XDP0cjTiSkq0ozR5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDCzMjcxNjEwNj4lQBAHElMRQ</recordid><startdate>20050704</startdate><enddate>20050704</enddate><creator>Di Scala, Antonio J</creator><creator>Leistner, Thomas</creator><creator>Neukirchner, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050704</creationdate><title>Irreducibly acting subgroups of \(Gl(n,\rr)\)</title><author>Di Scala, Antonio J ; Leistner, Thomas ; Neukirchner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20862743403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Invariants</topic><topic>Set theory</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Di Scala, Antonio J</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><creatorcontrib>Neukirchner, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Scala, Antonio J</au><au>Leistner, Thomas</au><au>Neukirchner, Thomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Irreducibly acting subgroups of \(Gl(n,\rr)\)</atitle><jtitle>arXiv.org</jtitle><date>2005-07-04</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\) is maximal, i.e. it is conjugated to \(SO(1,n-1)_0\). Finally we calculate the vector space of \(G\)-invariant symmetric bilinear forms, show that it is at most 3-dimensional, and determine the maximal stabilizers for each dimension.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2005-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086274340 |
source | Free E- Journals |
subjects | Invariants Set theory Subgroups |
title | Irreducibly acting subgroups of \(Gl(n,\rr)\) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Irreducibly%20acting%20subgroups%20of%20%5C(Gl(n,%5Crr)%5C)&rft.jtitle=arXiv.org&rft.au=Di%20Scala,%20Antonio%20J&rft.date=2005-07-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086274340%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086274340&rft_id=info:pmid/&rfr_iscdi=true |