Irreducibly acting subgroups of \(Gl(n,\rr)\)
In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\) is maximal, i.e. it is conjugated to \(SO(1,n-1)_0\). Finally we calculate the vector space of \(G\)-invariant symmetric bilinear forms, show that it is at most 3-dimensional, and determine the maximal stabilizers for each dimension. |
---|---|
ISSN: | 2331-8422 |