Irreducibly acting subgroups of \(Gl(n,\rr)\)

In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-07
Hauptverfasser: Di Scala, Antonio J, Leistner, Thomas, Neukirchner, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note we prove the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup \(G \subset Gl(n,\rr)\) is closed. Moreover, if \(G\) admits an invariant bilinear form of Lorentzian signature, \(G\) is maximal, i.e. it is conjugated to \(SO(1,n-1)_0\). Finally we calculate the vector space of \(G\)-invariant symmetric bilinear forms, show that it is at most 3-dimensional, and determine the maximal stabilizers for each dimension.
ISSN:2331-8422