The asymptotics of ECH capacities
In a previous paper, the second author used embedded contact homology (ECH) of contact three-manifolds to define "ECH capacities" of four-dimensional symplectic manifolds. In the present paper we prove that for a four-dimensional Liouville domain with all ECH capacities finite, the asympto...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous paper, the second author used embedded contact homology (ECH) of contact three-manifolds to define "ECH capacities" of four-dimensional symplectic manifolds. In the present paper we prove that for a four-dimensional Liouville domain with all ECH capacities finite, the asymptotics of the ECH capacities recover the symplectic volume. This follows from a more general theorem relating the volume of a contact three-manifold to the asymptotics of the amount of symplectic action needed to represent certain classes in ECH. The latter theorem was used by the first and second authors to show that every contact form on a closed three-manifold has at least two embedded Reeb orbits. |
---|---|
ISSN: | 2331-8422 |