A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the zeta constants

We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice' Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald, the transcendence of the zeta function at o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-04
1. Verfasser: Lettington, Matthew C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lettington, Matthew C
description We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice' Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald, the transcendence of the zeta function at odd integer values, the Li Criterion for the Riemann Hypothesis and pseudo-characteristic polynomials for zeta related functions. We begin with a recent result for \zeta(2s) and some seemingly new Bernoulli relations, which we use to obtain a generalised Ramanujan polynomial and properties thereof.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086221515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086221515</sourcerecordid><originalsourceid>FETCH-proquest_journals_20862215153</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eODWQpqY2q2K4lrcl1ATTEnzaj4LPb31cwBXAzMzIRnjvCzqNWMzkofQUUpZtWFC8IzoLURvEFDDTnmHyVoDXlkZDbqwgnhTxoPpB2varwON_q3hLHvpUicdDGgfDnsjbQDprp_6VFFCO_5RuhgWZKrHqvIf52R5PFz2p2LweE8qxKbD5N2YGkbrirFSlIL_d70A1uNHcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086221515</pqid></control><display><type>article</type><title>A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the zeta constants</title><source>Free E- Journals</source><creator>Lettington, Matthew C</creator><creatorcontrib>Lettington, Matthew C</creatorcontrib><description>We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice' Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald, the transcendence of the zeta function at odd integer values, the Li Criterion for the Riemann Hypothesis and pseudo-characteristic polynomials for zeta related functions. We begin with a recent result for \zeta(2s) and some seemingly new Bernoulli relations, which we use to obtain a generalised Ramanujan polynomial and properties thereof.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Functions (mathematics) ; Mathematical analysis ; Polynomials</subject><ispartof>arXiv.org, 2012-04</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lettington, Matthew C</creatorcontrib><title>A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the zeta constants</title><title>arXiv.org</title><description>We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice' Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald, the transcendence of the zeta function at odd integer values, the Li Criterion for the Riemann Hypothesis and pseudo-characteristic polynomials for zeta related functions. We begin with a recent result for \zeta(2s) and some seemingly new Bernoulli relations, which we use to obtain a generalised Ramanujan polynomial and properties thereof.</description><subject>Functions (mathematics)</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eODWQpqY2q2K4lrcl1ATTEnzaj4LPb31cwBXAzMzIRnjvCzqNWMzkofQUUpZtWFC8IzoLURvEFDDTnmHyVoDXlkZDbqwgnhTxoPpB2varwON_q3hLHvpUicdDGgfDnsjbQDprp_6VFFCO_5RuhgWZKrHqvIf52R5PFz2p2LweE8qxKbD5N2YGkbrirFSlIL_d70A1uNHcQ</recordid><startdate>20120424</startdate><enddate>20120424</enddate><creator>Lettington, Matthew C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120424</creationdate><title>A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the zeta constants</title><author>Lettington, Matthew C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20862215153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Functions (mathematics)</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Lettington, Matthew C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lettington, Matthew C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the zeta constants</atitle><jtitle>arXiv.org</jtitle><date>2012-04-24</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice' Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald, the transcendence of the zeta function at odd integer values, the Li Criterion for the Riemann Hypothesis and pseudo-characteristic polynomials for zeta related functions. We begin with a recent result for \zeta(2s) and some seemingly new Bernoulli relations, which we use to obtain a generalised Ramanujan polynomial and properties thereof.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086221515
source Free E- Journals
subjects Functions (mathematics)
Mathematical analysis
Polynomials
title A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the zeta constants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20trio%20of%20Bernoulli%20relations,%20their%20implications%20for%20the%20Ramanujan%20polynomials%20and%20the%20zeta%20constants&rft.jtitle=arXiv.org&rft.au=Lettington,%20Matthew%20C&rft.date=2012-04-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086221515%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086221515&rft_id=info:pmid/&rfr_iscdi=true