A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the zeta constants

We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice' Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald, the transcendence of the zeta function at o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-04
1. Verfasser: Lettington, Matthew C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice' Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald, the transcendence of the zeta function at odd integer values, the Li Criterion for the Riemann Hypothesis and pseudo-characteristic polynomials for zeta related functions. We begin with a recent result for \zeta(2s) and some seemingly new Bernoulli relations, which we use to obtain a generalised Ramanujan polynomial and properties thereof.
ISSN:2331-8422