Combinatorial Interpretations of some Boij-Söderberg Decompositions
Boij-S\"oderberg theory shows that the Betti table of a graded module can be written as a liner combination of pure diagrams with integer coefficients. Using Ferrers hypergraphs and simplicial polytopes, we provide interpretations of these coefficients for ideals with a d-linear resolution, the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Boij-S\"oderberg theory shows that the Betti table of a graded module can be written as a liner combination of pure diagrams with integer coefficients. Using Ferrers hypergraphs and simplicial polytopes, we provide interpretations of these coefficients for ideals with a d-linear resolution, their quotient rings, and for Gorenstein rings whose resolution has essentially at most two linear strands. We also establish a structural result on the decomposition in the case of quasi-Gorenstein modules. |
---|---|
ISSN: | 2331-8422 |