Combinatorial Interpretations of some Boij-Söderberg Decompositions

Boij-S\"oderberg theory shows that the Betti table of a graded module can be written as a liner combination of pure diagrams with integer coefficients. Using Ferrers hypergraphs and simplicial polytopes, we provide interpretations of these coefficients for ideals with a d-linear resolution, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-03
Hauptverfasser: Nagel, Uwe, Sturgeon, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boij-S\"oderberg theory shows that the Betti table of a graded module can be written as a liner combination of pure diagrams with integer coefficients. Using Ferrers hypergraphs and simplicial polytopes, we provide interpretations of these coefficients for ideals with a d-linear resolution, their quotient rings, and for Gorenstein rings whose resolution has essentially at most two linear strands. We also establish a structural result on the decomposition in the case of quasi-Gorenstein modules.
ISSN:2331-8422