Inviscid limit of stochastic damped 2D Navier-Stokes equations

We consider the inviscid limit of the stochastic damped 2D Navier- Stokes equations. We prove that, when the viscosity vanishes, the stationary solution of the stochastic damped Navier-Stokes equations converges to a stationary solution of the stochastic damped Euler equation and that the rate of di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-07
Hauptverfasser: Bessaih, H, Ferrario, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the inviscid limit of the stochastic damped 2D Navier- Stokes equations. We prove that, when the viscosity vanishes, the stationary solution of the stochastic damped Navier-Stokes equations converges to a stationary solution of the stochastic damped Euler equation and that the rate of dissipation of enstrophy converges to zero. In particular, this limit obeys an enstrophy balance. The rates are computed with respect to a limit measure of the unique invariant measure of the stochastic damped Navier-Stokes equations.
ISSN:2331-8422