Separable Approximations and Decomposition Methods for the Augmented Lagrangian

In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczy\'{n}ski and the Parallel Coordinate Descent Method (PCDM) of Richt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-08
Hauptverfasser: Tappenden, Rachael, Richtarik, Peter, Buke, Burak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczy\'{n}ski and the Parallel Coordinate Descent Method (PCDM) of Richtárik and Takáč. We show that the two methods are equivalent for feasibility problems up to the selection of a single step-size parameter. Furthermore, we prove an improved complexity bound for PCDM under strong convexity, and show that this bound is at least \(8(L'/\bar{L})(\omega-1)^2\) times better than the best known bound for DQAM, where \(\omega\) is the degree of partial separability and \(L'\) and \(\bar{L}\) are the maximum and average of the block Lipschitz constants of the gradient of the quadratic penalty appearing in the augmented Lagrangian.
ISSN:2331-8422