Approximating Minimum Steiner Point Trees in Minkowski Planes
Given a set of points, we define a minimum Steiner point tree to be a tree interconnecting these points and possibly some additional points such that the length of every edge is at most 1 and the number of additional points is minimized. We propose using Steiner minimal trees to approximate minimum...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a set of points, we define a minimum Steiner point tree to be a tree interconnecting these points and possibly some additional points such that the length of every edge is at most 1 and the number of additional points is minimized. We propose using Steiner minimal trees to approximate minimum Steiner point trees. It is shown that in arbitrary metric spaces this gives a performance difference of at most \(2n-4\), where \(n\) is the number of terminals. We show that this difference is best possible in the Euclidean plane, but not in Minkowski planes with parallelogram unit balls. We also introduce a new canonical form for minimum Steiner point trees in the Euclidean plane; this demonstrates that minimum Steiner point trees are shortest total length trees with a certain discrete-edge-length condition. |
---|---|
ISSN: | 2331-8422 |