Bivariate copulas defined from matrices
We propose a semiparametric family of copulas based on a set of orthonormal functions and a matrix. This new copula permits to reach values of Spearman's Rho arbitrarily close to one without introducing a singular component. Moreover, it encompasses several extensions of FGM copulas as well as...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a semiparametric family of copulas based on a set of orthonormal functions and a matrix. This new copula permits to reach values of Spearman's Rho arbitrarily close to one without introducing a singular component. Moreover, it encompasses several extensions of FGM copulas as well as copulas based on partition of unity such as Bernstein or checkerboard copulas. Finally, it is also shown that projection of arbitrary densities of copulas onto tensor product bases can enter our framework. |
---|---|
ISSN: | 2331-8422 |