On The Solutions of The Equation (4^n)^x+p^y=z^2
In this paper, we gave solutions of the Diophantine equations 16^{x}+p^{y}=z^{2}, 64^{x}+p^{y}=z^{2} where p is an odd prime, n is a positive integer and x,y,z are non-negative integers. Finally we gave a generalization of the Diophantine equation (4^{n})^{x}+p^{y}=z^{2}.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we gave solutions of the Diophantine equations 16^{x}+p^{y}=z^{2}, 64^{x}+p^{y}=z^{2} where p is an odd prime, n is a positive integer and x,y,z are non-negative integers. Finally we gave a generalization of the Diophantine equation (4^{n})^{x}+p^{y}=z^{2}. |
---|---|
ISSN: | 2331-8422 |