Lineability, spaceability, and additivity cardinals for Darboux-like functions

We introduce the concept of {\em maximal lineability cardinal number}, \(\mL(M)\), of a subset \(M\) of a topological vector space and study its relation to the cardinal numbers known as: additivity \(A(M)\), homogeneous lineability \(\HL(M)\), and lineability \(\LL(M)\) of \(M\). In particular, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-09
Hauptverfasser: Ciesielski, Krzysztof Chris, Gámez-Merino, José L, Pellegrino, Daniel, Seoane-Sepúlveda, Juan B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the concept of {\em maximal lineability cardinal number}, \(\mL(M)\), of a subset \(M\) of a topological vector space and study its relation to the cardinal numbers known as: additivity \(A(M)\), homogeneous lineability \(\HL(M)\), and lineability \(\LL(M)\) of \(M\). In particular, we will describe, in terms of \(\LL\), the lineability and spaceability of the families of the following Darboux-like functions on \(\real^n\), \(n\ge 1\): extendable, Jones, and almost continuous functions.
ISSN:2331-8422