Lineability, spaceability, and additivity cardinals for Darboux-like functions
We introduce the concept of {\em maximal lineability cardinal number}, \(\mL(M)\), of a subset \(M\) of a topological vector space and study its relation to the cardinal numbers known as: additivity \(A(M)\), homogeneous lineability \(\HL(M)\), and lineability \(\LL(M)\) of \(M\). In particular, we...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the concept of {\em maximal lineability cardinal number}, \(\mL(M)\), of a subset \(M\) of a topological vector space and study its relation to the cardinal numbers known as: additivity \(A(M)\), homogeneous lineability \(\HL(M)\), and lineability \(\LL(M)\) of \(M\). In particular, we will describe, in terms of \(\LL\), the lineability and spaceability of the families of the following Darboux-like functions on \(\real^n\), \(n\ge 1\): extendable, Jones, and almost continuous functions. |
---|---|
ISSN: | 2331-8422 |