Equilibrium points of a singular cooperative system with free boundary
In this paper we initiate the study of maps minimising the energy $$ \int_{D} (|\nabla \u|^2+2|\u|)\ dx. $$ which, due to Lipschitz character of the integrand, gives rise to the singular Euler equations $$ \Delta \u=\frac{\u}{|\u|}\chi_{\left\lbrace |\u|>0\right\rbrace}, \qquad \u = (u_1, \cdots,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we initiate the study of maps minimising the energy $$ \int_{D} (|\nabla \u|^2+2|\u|)\ dx. $$ which, due to Lipschitz character of the integrand, gives rise to the singular Euler equations $$ \Delta \u=\frac{\u}{|\u|}\chi_{\left\lbrace |\u|>0\right\rbrace}, \qquad \u = (u_1, \cdots, u_m) \ . $$ Our primary goal in this paper is to set up a road map for future developments of the theory related to such energy minimising maps. Our results here concern regularity of the solution as well as that of the free boundary. They are achieved by using monotonicity formulas and epiperimetric inequalities, in combination with geometric analysis. |
---|---|
ISSN: | 2331-8422 |