Complexity of OM factorizations of polynomials over local fields
Let \(k\) be a locally compact complete field with respect to a discrete valuation \(v\). Let \(\oo\) be the valuation ring, \(\m\) the maximal ideal and \(F(x)\in\oo[x]\) a monic separable polynomial of degree \(n\). Let \(\delta=v(\dsc(F))\). The Montes algorithm computes an OM factorization of \(...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jens-Dietrich Bauch Nart, Enric Stainsby, Hayden D |
description | Let \(k\) be a locally compact complete field with respect to a discrete valuation \(v\). Let \(\oo\) be the valuation ring, \(\m\) the maximal ideal and \(F(x)\in\oo[x]\) a monic separable polynomial of degree \(n\). Let \(\delta=v(\dsc(F))\). The Montes algorithm computes an OM factorization of \(F\). The single-factor lifting algorithm derives from this data a factorization of \(F \md{\m^\nu}\), for a prescribed precision \(\nu\). In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of \(O(n^{2+\epsilon}+n^{1+\epsilon}\delta^{2+\epsilon}+n^2\nu^{1+\epsilon})\) word operations for the complexity of the computation of a factorization of \(F \md{\m^\nu}\), assuming that the residue field of \(k\) is small. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085744131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085744131</sourcerecordid><originalsourceid>FETCH-proquest_journals_20857441313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcM7PLchJrcgsqVTIT1Pw91VIS0wuyS_KrEosyczPKwYJFuTnVObl52Ym5gC5ZalFCjn5yYk5CmmZqTkpxTwMrGlAiVReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzKwMDU3MTE0NjQmThUAZ2o5ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085744131</pqid></control><display><type>article</type><title>Complexity of OM factorizations of polynomials over local fields</title><source>Free E- Journals</source><creator>Jens-Dietrich Bauch ; Nart, Enric ; Stainsby, Hayden D</creator><creatorcontrib>Jens-Dietrich Bauch ; Nart, Enric ; Stainsby, Hayden D</creatorcontrib><description>Let \(k\) be a locally compact complete field with respect to a discrete valuation \(v\). Let \(\oo\) be the valuation ring, \(\m\) the maximal ideal and \(F(x)\in\oo[x]\) a monic separable polynomial of degree \(n\). Let \(\delta=v(\dsc(F))\). The Montes algorithm computes an OM factorization of \(F\). The single-factor lifting algorithm derives from this data a factorization of \(F \md{\m^\nu}\), for a prescribed precision \(\nu\). In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of \(O(n^{2+\epsilon}+n^{1+\epsilon}\delta^{2+\epsilon}+n^2\nu^{1+\epsilon})\) word operations for the complexity of the computation of a factorization of \(F \md{\m^\nu}\), assuming that the residue field of \(k\) is small.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Complexity ; Factorization ; Polynomials</subject><ispartof>arXiv.org, 2012-04</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jens-Dietrich Bauch</creatorcontrib><creatorcontrib>Nart, Enric</creatorcontrib><creatorcontrib>Stainsby, Hayden D</creatorcontrib><title>Complexity of OM factorizations of polynomials over local fields</title><title>arXiv.org</title><description>Let \(k\) be a locally compact complete field with respect to a discrete valuation \(v\). Let \(\oo\) be the valuation ring, \(\m\) the maximal ideal and \(F(x)\in\oo[x]\) a monic separable polynomial of degree \(n\). Let \(\delta=v(\dsc(F))\). The Montes algorithm computes an OM factorization of \(F\). The single-factor lifting algorithm derives from this data a factorization of \(F \md{\m^\nu}\), for a prescribed precision \(\nu\). In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of \(O(n^{2+\epsilon}+n^{1+\epsilon}\delta^{2+\epsilon}+n^2\nu^{1+\epsilon})\) word operations for the complexity of the computation of a factorization of \(F \md{\m^\nu}\), assuming that the residue field of \(k\) is small.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Factorization</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcM7PLchJrcgsqVTIT1Pw91VIS0wuyS_KrEosyczPKwYJFuTnVObl52Ym5gC5ZalFCjn5yYk5CmmZqTkpxTwMrGlAiVReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzKwMDU3MTE0NjQmThUAZ2o5ZA</recordid><startdate>20120420</startdate><enddate>20120420</enddate><creator>Jens-Dietrich Bauch</creator><creator>Nart, Enric</creator><creator>Stainsby, Hayden D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120420</creationdate><title>Complexity of OM factorizations of polynomials over local fields</title><author>Jens-Dietrich Bauch ; Nart, Enric ; Stainsby, Hayden D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20857441313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Factorization</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Jens-Dietrich Bauch</creatorcontrib><creatorcontrib>Nart, Enric</creatorcontrib><creatorcontrib>Stainsby, Hayden D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jens-Dietrich Bauch</au><au>Nart, Enric</au><au>Stainsby, Hayden D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Complexity of OM factorizations of polynomials over local fields</atitle><jtitle>arXiv.org</jtitle><date>2012-04-20</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Let \(k\) be a locally compact complete field with respect to a discrete valuation \(v\). Let \(\oo\) be the valuation ring, \(\m\) the maximal ideal and \(F(x)\in\oo[x]\) a monic separable polynomial of degree \(n\). Let \(\delta=v(\dsc(F))\). The Montes algorithm computes an OM factorization of \(F\). The single-factor lifting algorithm derives from this data a factorization of \(F \md{\m^\nu}\), for a prescribed precision \(\nu\). In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of \(O(n^{2+\epsilon}+n^{1+\epsilon}\delta^{2+\epsilon}+n^2\nu^{1+\epsilon})\) word operations for the complexity of the computation of a factorization of \(F \md{\m^\nu}\), assuming that the residue field of \(k\) is small.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085744131 |
source | Free E- Journals |
subjects | Algorithms Complexity Factorization Polynomials |
title | Complexity of OM factorizations of polynomials over local fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Complexity%20of%20OM%20factorizations%20of%20polynomials%20over%20local%20fields&rft.jtitle=arXiv.org&rft.au=Jens-Dietrich%20Bauch&rft.date=2012-04-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085744131%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085744131&rft_id=info:pmid/&rfr_iscdi=true |