Complexity of OM factorizations of polynomials over local fields

Let \(k\) be a locally compact complete field with respect to a discrete valuation \(v\). Let \(\oo\) be the valuation ring, \(\m\) the maximal ideal and \(F(x)\in\oo[x]\) a monic separable polynomial of degree \(n\). Let \(\delta=v(\dsc(F))\). The Montes algorithm computes an OM factorization of \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-04
Hauptverfasser: Jens-Dietrich Bauch, Nart, Enric, Stainsby, Hayden D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(k\) be a locally compact complete field with respect to a discrete valuation \(v\). Let \(\oo\) be the valuation ring, \(\m\) the maximal ideal and \(F(x)\in\oo[x]\) a monic separable polynomial of degree \(n\). Let \(\delta=v(\dsc(F))\). The Montes algorithm computes an OM factorization of \(F\). The single-factor lifting algorithm derives from this data a factorization of \(F \md{\m^\nu}\), for a prescribed precision \(\nu\). In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of \(O(n^{2+\epsilon}+n^{1+\epsilon}\delta^{2+\epsilon}+n^2\nu^{1+\epsilon})\) word operations for the complexity of the computation of a factorization of \(F \md{\m^\nu}\), assuming that the residue field of \(k\) is small.
ISSN:2331-8422