Teichmüller space of negatively curved metrics on Gromov Thurston Manifolds is not contractible
In this paper we prove that for all \(n=4k-2\), \(k\ge2\) there exists closed \(n\)-dimensional Riemannian manifolds \(M\) with negative sectional curvature that do not have the homotopy type of a locally symmetric space, such that \(\pi_{1}(\mathcal{T}^{
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove that for all \(n=4k-2\), \(k\ge2\) there exists closed \(n\)-dimensional Riemannian manifolds \(M\) with negative sectional curvature that do not have the homotopy type of a locally symmetric space, such that \(\pi_{1}(\mathcal{T}^{ |
---|---|
ISSN: | 2331-8422 |