Teichmüller space of negatively curved metrics on Gromov Thurston Manifolds is not contractible

In this paper we prove that for all \(n=4k-2\), \(k\ge2\) there exists closed \(n\)-dimensional Riemannian manifolds \(M\) with negative sectional curvature that do not have the homotopy type of a locally symmetric space, such that \(\pi_{1}(\mathcal{T}^{

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-11
1. Verfasser: Sorcar, Gangotryi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove that for all \(n=4k-2\), \(k\ge2\) there exists closed \(n\)-dimensional Riemannian manifolds \(M\) with negative sectional curvature that do not have the homotopy type of a locally symmetric space, such that \(\pi_{1}(\mathcal{T}^{
ISSN:2331-8422