On the universal coefficients formula for shape homology
In this paper it is investigated whether various shape homology theories satisfy the Universal Coefficients Formula (UCF). It is proved that pro-homology and strong homology satisfy UCF in the class FAB of finitely generated abelian groups, while they do not satisfy UCF in the class AB of all abelia...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Prasolov, Andrei V |
description | In this paper it is investigated whether various shape homology theories satisfy the Universal Coefficients Formula (UCF). It is proved that pro-homology and strong homology satisfy UCF in the class FAB of finitely generated abelian groups, while they do not satisfy UCF in the class AB of all abelian groups. Two new shape homology theories (called UCF-balanced) are constructed. It is proved that balanced pro-homology satisfies UCF in the class AB, while balanced strong homology satisfies UCF only in the class FAB. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085590848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085590848</sourcerecordid><originalsourceid>FETCH-proquest_journals_20855908483</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScCzFpNM6iuLm4l1Be2pQ0r-Y1gn-vgh_gdIZ7F6yQSu0qU0u5YiXRIISQ-4PUWhXM3CKfe-A5-icksoG3CM751kOciTtMYw72K6feTsB7HDFg99qwpbOBoPy5ZtvL-X66VlPCRwaamwFzip_USGG0PgpTG_Xf9QZuLjaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085590848</pqid></control><display><type>article</type><title>On the universal coefficients formula for shape homology</title><source>Free E- Journals</source><creator>Prasolov, Andrei V</creator><creatorcontrib>Prasolov, Andrei V</creatorcontrib><description>In this paper it is investigated whether various shape homology theories satisfy the Universal Coefficients Formula (UCF). It is proved that pro-homology and strong homology satisfy UCF in the class FAB of finitely generated abelian groups, while they do not satisfy UCF in the class AB of all abelian groups. Two new shape homology theories (called UCF-balanced) are constructed. It is proved that balanced pro-homology satisfies UCF in the class AB, while balanced strong homology satisfies UCF only in the class FAB.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Homology</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Prasolov, Andrei V</creatorcontrib><title>On the universal coefficients formula for shape homology</title><title>arXiv.org</title><description>In this paper it is investigated whether various shape homology theories satisfy the Universal Coefficients Formula (UCF). It is proved that pro-homology and strong homology satisfy UCF in the class FAB of finitely generated abelian groups, while they do not satisfy UCF in the class AB of all abelian groups. Two new shape homology theories (called UCF-balanced) are constructed. It is proved that balanced pro-homology satisfies UCF in the class AB, while balanced strong homology satisfies UCF only in the class FAB.</description><subject>Group theory</subject><subject>Homology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScCzFpNM6iuLm4l1Be2pQ0r-Y1gn-vgh_gdIZ7F6yQSu0qU0u5YiXRIISQ-4PUWhXM3CKfe-A5-icksoG3CM751kOciTtMYw72K6feTsB7HDFg99qwpbOBoPy5ZtvL-X66VlPCRwaamwFzip_USGG0PgpTG_Xf9QZuLjaE</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Prasolov, Andrei V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130501</creationdate><title>On the universal coefficients formula for shape homology</title><author>Prasolov, Andrei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20855908483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Group theory</topic><topic>Homology</topic><toplevel>online_resources</toplevel><creatorcontrib>Prasolov, Andrei V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasolov, Andrei V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the universal coefficients formula for shape homology</atitle><jtitle>arXiv.org</jtitle><date>2013-05-01</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>In this paper it is investigated whether various shape homology theories satisfy the Universal Coefficients Formula (UCF). It is proved that pro-homology and strong homology satisfy UCF in the class FAB of finitely generated abelian groups, while they do not satisfy UCF in the class AB of all abelian groups. Two new shape homology theories (called UCF-balanced) are constructed. It is proved that balanced pro-homology satisfies UCF in the class AB, while balanced strong homology satisfies UCF only in the class FAB.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085590848 |
source | Free E- Journals |
subjects | Group theory Homology |
title | On the universal coefficients formula for shape homology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20universal%20coefficients%20formula%20for%20shape%20homology&rft.jtitle=arXiv.org&rft.au=Prasolov,%20Andrei%20V&rft.date=2013-05-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085590848%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085590848&rft_id=info:pmid/&rfr_iscdi=true |