On the universal coefficients formula for shape homology
In this paper it is investigated whether various shape homology theories satisfy the Universal Coefficients Formula (UCF). It is proved that pro-homology and strong homology satisfy UCF in the class FAB of finitely generated abelian groups, while they do not satisfy UCF in the class AB of all abelia...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper it is investigated whether various shape homology theories satisfy the Universal Coefficients Formula (UCF). It is proved that pro-homology and strong homology satisfy UCF in the class FAB of finitely generated abelian groups, while they do not satisfy UCF in the class AB of all abelian groups. Two new shape homology theories (called UCF-balanced) are constructed. It is proved that balanced pro-homology satisfies UCF in the class AB, while balanced strong homology satisfies UCF only in the class FAB. |
---|---|
ISSN: | 2331-8422 |