Multi-player detection in soccer broadcast videos using a blob-guided particle swarm optimization method

Soccer is the most popular sport around the world, and automatic processing of soccer images is a precious alternative to the manual solutions regarding the explosive growth of soccer videos. A new multi-player detection algorithm in far view frames as an initial step to a wide range of applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2017-05, Vol.76 (10), p.12251-12280
Hauptverfasser: Manafifard, M., Ebadi, H., Moghaddam, H. Abrishami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soccer is the most popular sport around the world, and automatic processing of soccer images is a precious alternative to the manual solutions regarding the explosive growth of soccer videos. A new multi-player detection algorithm in far view frames as an initial step to a wide range of applications, such as player tracking, is addressed in this paper. In the proposed detector, a two-step blob detection (grass-based blob detection followed by an edge-based blob detection) is combined with an efficient search mechanism based on particle swarm optimization (PSO) by assigning sub-swarms to each detected blob. Then, a sub-swarm is initialized and tripled to search for three models corresponding to two teams and the referee. Therefore, the most player-like regions in detected blobs are simultaneously searched by all sub-swarms flying through the solution space, thus expanding the scope of single player detection to multi-player detection. Experimental results demonstrate the efficiency and robustness of the algorithm.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-016-3625-6