Multi-player detection in soccer broadcast videos using a blob-guided particle swarm optimization method
Soccer is the most popular sport around the world, and automatic processing of soccer images is a precious alternative to the manual solutions regarding the explosive growth of soccer videos. A new multi-player detection algorithm in far view frames as an initial step to a wide range of applications...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2017-05, Vol.76 (10), p.12251-12280 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soccer is the most popular sport around the world, and automatic processing of soccer images is a precious alternative to the manual solutions regarding the explosive growth of soccer videos. A new multi-player detection algorithm in far view frames as an initial step to a wide range of applications, such as player tracking, is addressed in this paper. In the proposed detector, a two-step blob detection (grass-based blob detection followed by an edge-based blob detection) is combined with an efficient search mechanism based on particle swarm optimization (PSO) by assigning sub-swarms to each detected blob. Then, a sub-swarm is initialized and tripled to search for three models corresponding to two teams and the referee. Therefore, the most player-like regions in detected blobs are simultaneously searched by all sub-swarms flying through the solution space, thus expanding the scope of single player detection to multi-player detection. Experimental results demonstrate the efficiency and robustness of the algorithm. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-016-3625-6 |