A Tree Sperner Lemma

In this paper we prove a combinatorial theorem for finite labellings of trees, and show that it is equivalent to a theorem for finite covers of metric trees and a fixed point theorem on metric trees. We trace how these connections mimic the equivalence of the Brouwer fixed point theorem with the cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-07
Hauptverfasser: Niedermaier, Andrew, Rizzolo, Douglas, Su, Francis Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove a combinatorial theorem for finite labellings of trees, and show that it is equivalent to a theorem for finite covers of metric trees and a fixed point theorem on metric trees. We trace how these connections mimic the equivalence of the Brouwer fixed point theorem with the classical KKM lemma and Sperner's lemma. We also draw connections to a KKM-type theorem about infinite covers of metric trees and fixed point theorems for non-compact metric trees. Finally, we develop a new KKM-type theorem for cycles, and discuss interesting social consequences, including an application in voting theory.
ISSN:2331-8422