Spectral norm of random Toeplitz matrices
In this work, we consider symmetric random Toeplitz matrices \(T_n\) generated by i.i.d. zero mean random variables \({X_k}\) satisfying the moment conditions: \(E|X_k|^2=1\) and \(\E|X_1|^n \le n^{\sqrt{n}}\) for all \(n\ge 3\). We prove that the largest eigenvalue of \(T_n\) scaled by \(\sqrt{n lo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-01 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we consider symmetric random Toeplitz matrices \(T_n\) generated by i.i.d. zero mean random variables \({X_k}\) satisfying the moment conditions: \(E|X_k|^2=1\) and \(\E|X_1|^n \le n^{\sqrt{n}}\) for all \(n\ge 3\). We prove that the largest eigenvalue of \(T_n\) scaled by \(\sqrt{n log(n)}\) converges almost surely to \(1\). |
---|---|
ISSN: | 2331-8422 |