Monoids \(\mathrm{Mon}\langle a,b:a^{\alpha}b^{\beta}a^{\gamma}b^{\delta}a^{\varepsilon}b^{\varphi}=b\rangle\) admit finite complete rewriting systems

The aim of this note is to prove that monoids \(\mathrm{Mon}\langle a,b:aUb=b\rangle\), with \(aUb\) of relative length 6, admit finite complete rewriting systems. This is some advance in the understanding the long-standing open problem whether the word problem for one-relator monoids is soluble.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Cain, Alan, Maltcev, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this note is to prove that monoids \(\mathrm{Mon}\langle a,b:aUb=b\rangle\), with \(aUb\) of relative length 6, admit finite complete rewriting systems. This is some advance in the understanding the long-standing open problem whether the word problem for one-relator monoids is soluble.
ISSN:2331-8422