Monoids \(\mathrm{Mon}\langle a,b:a^{\alpha}b^{\beta}a^{\gamma}b^{\delta}a^{\varepsilon}b^{\varphi}=b\rangle\) admit finite complete rewriting systems
The aim of this note is to prove that monoids \(\mathrm{Mon}\langle a,b:aUb=b\rangle\), with \(aUb\) of relative length 6, admit finite complete rewriting systems. This is some advance in the understanding the long-standing open problem whether the word problem for one-relator monoids is soluble.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this note is to prove that monoids \(\mathrm{Mon}\langle a,b:aUb=b\rangle\), with \(aUb\) of relative length 6, admit finite complete rewriting systems. This is some advance in the understanding the long-standing open problem whether the word problem for one-relator monoids is soluble. |
---|---|
ISSN: | 2331-8422 |